
ISO/IEC JTC 1/SC 17 N 4253

ISO/IEC JTC 1/SC 17
Cards and personal identification
Secretariat: BSI (United Kingdom)

Document type: Text for CD ballot or comment

Title: Notification of Ballot: ISO/IEC 10373-6:2011/PDAM 5 - Identification cards - Test methods - Part
6: Proximity cards - AMENDMENT 5 Bit rates of 3fc/4 and fc

Status:  
WORK ITEM: 60115
 
STATUS: This ballot has been posted to the ISO Electronic balloting application and is available
under the Balloting Portal, Committee Internal Balloting.

Date of document: 2011-07-14

Expected action: VOTE

Action due date: 2011-09-15

No. of pages: 19

Email of secretary: chris.starr@ukpayments.org.uk

Committee URL: http://isotc.iso.org/livelink/livelink/open/jtc1sc17

mailto:chris.starr@ukpayments.org.uk�
http://isotc.iso.org/livelink/livelink/open/jtc1sc17


© ISO/IEC 2011 – All rights reserved 

Document type:   International Standard 
Document subtype:   Amendment 
Document stage:   (30) Committee 
Document language:   E 
 
C:\Userdata\Standards\10373-6\Amendment 4 VHBR\Editing Ispra 2011\Send to WG8 member 
review\wg8nxxxx_CD10373-6_AMD5_VHBR_PSK_V3.doc  STD Version 2.1c2 
 

ISO/IEC JTC 1/SC 17/WG 8  N 1815 
Date:   2011-04-01 

ISO/IEC 10373-6:2011/PDAM 5 

ISO/IEC JTC 1/SC 17/WG 8 

Secretariat:   DIN 

Identification cards — Test methods — Part 6: Proximity cards 

AMENDMENT 5 
Bit rates of 3fc/4 and fc 

Cartes d'identification — Méthodes d'essai — Partie 6: Cartes de proximité 

AMENDEMENT 5 
Débits binaires supérieurs à fc/2 jusqu'à fc 

 

Warning 

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to 
change without notice and may not be referred to as an International Standard. 

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of 
which they are aware and to provide supporting documentation. 

 

 

 



ISO/IEC 10373-6:2011/PDAM 5 

ii © ISO/IEC 2011 – All rights reserved 
 

Copyright notice 

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the 
reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards 
development process is permitted without prior permission from ISO, neither this document nor any extract 
from it may be reproduced, stored or transmitted in any form for any other purpose without prior written 
permission from ISO. 

Requests for permission to reproduce this document for the purpose of selling it should be addressed as 
shown below or to ISO's member body in the country of the requester: 

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as 
appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or 
SC within the framework of which the working document has been prepared.] 

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. 

Violators may be prosecuted. 

 

 

 

 

 



ISO/IEC 10373-6:2011/PDAM 5 

© ISO/IEC 2011 – All rights reserved iii 
 

Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are members of 
ISO or IEC participate in the development of International Standards through technical committees 
established by the respective organization to deal with particular fields of technical activity. ISO and IEC 
technical committees collaborate in fields of mutual interest. Other international organizations, governmental 
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information 
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of the joint technical committee is to prepare International Standards. Draft International 
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as 
an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 

Amendment 5 to ISO/IEC 10373-6:2011 was prepared by Joint Technical Committee ISO/IEC JTC 1, 
Information technology, Subcommittee SC 17, Cards and personal identification. 

 





 ISO/IEC 10373-6:2011/PDAM 5 

 

© ISO/IEC 2011 – All rights reserved 1 
 

Identification cards — Test methods — Part 6: Proximity cards 

Amendment 5: Bit rates of 3fc/4 and fc 

Page 18 of ISO/IEC 10373-6:2011 

Add following new sub clause at the end of 7.1.5.3: 

" 

7.1.6 VHBR PSK IQ segment and waveform characteristics 

7.1.6.1 Purpose  

This test determines the IQ segment transmitted by the PCD PSK signal as well as the noise and inter-symbol 
interference parameters as defined in ISO/IEC14443-2:2010 PDAM4. 

7.1.6.2 Test procedure  

a) Position the calibration coil at an arbitrary position in the defined operating volume and display the 
induced coil voltage on a suitable oscilloscope (see 5.1.1). The sampling scope should capture at least 
the full first frame PCD to PICC communication after the switch to the data rate under test has occurred. 
The activation of the PSK data rate is performed as defined in ISO/IEC 14443-4. Determine the waveform 
characteristics using the analysis tool defined in Annex Amd.5 A and B. 

b) Tune the Reference PICC to 16,5 MHz as described in 5.4.3 steps a) to g) and switch the jumper J1 to 
position 'c'.  

c) Place the Reference PICC at a particular position in the PCD operating volume. 

d) Apply and adjust a DC voltage at CON2 to obtain a DC voltage at connector CON3 of VLoad. 

NOTE 1 If a DC voltage of VLoad cannot be reached at the selected position, the maximum achievable voltage should 
be used for the test. 

e) If the unmodulated voltage on CON4, measured with a suitable oscilloscope (see 5.1.1) is below 
1 V (peak-to-peak), use an alternative pick up coil to determine the waveform characteristic. 

NOTE 2 This alternative pick up coil should have a "figure of 8" shape with 15 mm radius positioned farthest away from 
the Reference PICC to minimize coupling and as close as possible to the PCD antenna to maximize induced voltage. 

f) Determine the waveform characteristics from the voltage at CON4 or at the alternative pick up coil using 
the analysis tool defined in Annex Amd.5 A. For this purpose the PCD shall transmit an I-Block with 
predetermined random data of 1kByte in the INF-field using an extended frame as defined in ISO/IEC 
14443-3. 

g) Repeat steps c) to f) for various positions within the operating volume. 

NOTE 3 The selected position of the calibration coil within the operating volume is not expected to affect the results. 



ISO/IEC 10373-6:2011/PDAM 5 

2 © ISO/IEC 2011 – All rights reserved 
 

NOTE 4 The Reference PICC load does not represent the worst case loading effect of a PICC. Higher loading effects 
may be achieved with resonance frequencies closer to carrier frequency (e.g. 15 MHz or 13,56 MHz). 

7.1.6.3 Test report  

The measured voltage at point f) in section 7.1.6.2 should be sampled and analyzed with the analysis tool 
reported in  Annex Amd.5 B. 

The test report shall give the measured PSK IQ segment, the ISI parameters (magnitude and rotation) and the 
RMS phase noise of the PCD field, within the defined operating volume in unloaded and loaded conditions. 
The measured parameters shall be within the limits specified in ISO/IEC 14443-2:2010 Amd.4.  

" 

 

Page 22 of ISO/IEC 10373-6:2011 

Add following new sub clause at the end of 7.2.4.5: 

" 

7.2.5 PICC VHBR PSK reception Test 

7.2.5.1 Purpose 

The purpose of this test is to verify the ability of the PICC to receive the PCD commands for bit rates of 3fc/4 
and fc using PSK modulation. 

7.2.5.2 Test conditions 

Five test conditions are defined with noise and ISI levels at the border of the signal parameters as defined in 
14443-2:2010 Amd.4. The test conditions are created using the test PCD assembly for bitrates higher than 
fc/128 in combination with digital pre-conditioning of the transmitted symbols as defined in Annex Amd.5 C 
and D. 

― Condition 1: Pseudo-random white noise is added to the transmitted symbols such that the root-mean 
square (RMS) phase noise is the maximum value as defined in ISO/IEC 14443-
2:2010 Amd.4. 

― Condition 2: The test PCD signal is digitally pre-conditioned to have a maximum inter-symbol 
interference for a detuning angle ≤ ISId,lim. The detuning angle is set at ISId,lim degrees as 
defined in ISO/IEC 14443-2:2010 Amd.4. 

― Condition 3: The test PCD signal is digitally pre-conditioned to have a maximum inter-symbol 
interference for a detuning angle ≤ ISId,lim. The detuning angle is set at - ISId,lim degrees as 
defined in ISO/IEC 14443-2:2010 Amd.4. 

― Condition 4: The test PCD signal is digitally pre-conditioned to have a maximum inter-symbol 
interference for a detuning angle > ISId,lim. The detuning angle is set at 60 degrees. 

― Condition 5: The test PCD signal is digitally pre-conditioned to have a maximum inter-symbol 
interference for a detuning angle > ISId,lim. The detuning angle is set at - 60 degrees. 

 
NOTE 1 These conditions are applied after switching to the bit rate under test.  

NOTE 2 Annex Amd.5 C and Annex Amd.5 D informatively describe how to create the above 5 conditions in the base-
band domain (on the complex envelope of the signal). 

These 5 test conditions shall be tested at least using Hmin and Hmax. 



ISO/IEC 10373-6:2011/PDAM 5 

© ISO/IEC 2011 – All rights reserved 3 
 

7.2.5.3 Test procedure 

A PICC supporting the optional 3fc/4 bit rate shall operate under the defined conditions after selection of a bit 
rate of 3fc/4. This PICC shall respond correctly to an I-block transmitted at a bit rate of 3fc/4. The activation of 
the bit rate uses S(PARAMETER) mechanism as defined in ISO/IEC 14443-4. 

A PICC supporting the optional fc bit rate shall operate under the defined conditions after selection of a bit rate of fc. This 
PICC shall respond correctly to an I-block transmitted at a bit rate of fc. The activation of the bit rate uses 
S(PARAMETER) mechanism as defined in ISO/IEC 14443-4.NOTE For testing, the PCD shall transmit an I-Block with 
predetermined random data of 1kByte in the INF-field using an extended frame as defined in ISO/IEC 14443-3. 

7.2.5.4 Test report 

The test report shall confirm the intended operation at the bit rates under test. Used test conditions shall be 
mentioned in the test report. 

" 

 

Page 198 of ISO/IEC 10373-6:2011 

Add following new Annexes at the end of Annex I: 

" 

 



ISO/IEC 10373-6:2011/PDAM 5 

4 © ISO/IEC 2011 – All rights reserved 
 

Annex Amd.5 A 
(normative) 

 
IQ segment, noise and ISI analysis tool 

This annex give MATLAB-style code that evaluates the data as captured by an oscilloscope during test 
procedure 7.1.6.2. 
 
Assumptions: 

The PSK order M (number of constellation points) is known, together with the extension of the IQ segment 
(the portion of the circle used for modulation), i.e. the phase difference between the extreme 2 
constellation points. Moreover, the random data within the INF-Field is a priori known by the evaluation 
algorithm and is denoted as reference data. 

 
Algorithm initialization: 

1. Read scope data from .csv file (voltage versus time) 
2. Calculate sample time (=1/fs) based on time values : 

tsample = (time[Nsamples-1]-t_start)/(Nsamples-1); 
3. Software ―resample‖ to pre-defined rate such that  

Nsamples_per_symbol = (1/tsample)/symrate  
becomes certain pre-defined integer (minimum 8 samples per carrier period).  

 
Main Algorithm: 

4. Run the algorithm that evaluates the interference (both on the IQ plane signal and on the phase 
signal) and the phase noise based on a few basic steps: 
 Align sample grid to symbols. This is obtained by demodulating the signal into the IQ plane, using 

different symbol grids, and selecting the grid which maximizes the variance of the demodulated 
signal. 

 Demodulate by windowed DFT per symbol. The DFT is operated over a symbol time and 
evaluated at the carrier frequency. Prior to DFT a windowing by a time domain mask is done, that 
only selects the ending portion of a symbol. The value of this DFT at the carrier frequency equals 
the integral of the baseband signal during the windowing time. 

 Align symbols, extract the transmitted frame. This is done by searching the maximum correlation 
between the reference symbols with the demodulated ones. 

 Evaluate ISI and noise. This is achieved with a system identification approach using a Linear 
Least Squares (LLS) fit. 

 
About the last point the following sub-steps are taken: 

- The received frame is fitted in a linear-least-squares sense to an arbitrary linear model on IQ plane. 
- ISI and detuning are deduced univocally and robustly against noise from this model. 
- A noiseless reference is built based on this model. Noise is estimated as a difference between this 

reference and the received signal. 
- The RMS value of the noise in the phase direction (phase noise) is reported after a differentiating fi lter 

which removes the low frequency components. This D-RMS value is used to decide if the tests 
passes or fails. 

 
 



ISO/IEC 10373-6:2011/PDAM 5 

© ISO/IEC 2011 – All rights reserved 5 
 

%% ASSUME knowledge of: 

%%   fs, fSymb, fc 

%%   ASSUME: fs is integer multiple of fc 

%%   M       (PSK modulation order) 

%%   DphiDeg (IQ-segment sector, DEGREES) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% fc                    =   carrier frequency 

% fs                    =   sample frequency, integer multiple of fc 

% fSymb                 =   symbol frequency (=1/etu) 

% M                     =   PSK Modulation order 

% DphiDeg               =   IQ-segment extension (degrees) 

% Input_fs,NN           =   scope data resampled at fs 

% Symbols_TX_REF, nTX   =   TX symbols (a-priory known for SyncFrame 4-8-16 PSK) 
function DFTsymbs = Eval_PCD_2_PICC(fc, fs, fSymb, M, DphiDeg, Input_fs, NN, Symbols_TX_REF, nTX) 

  

PN_MAX_RMS_SI = 0.033; 

ISIm_SI_Max1  = 1.6; 

ISIm_SI_Max2  = 0.5; 

ISId_DEG_MAX  = 20; 

rad2deg       = 180/pi; 

  

%Modulation Parameter definition based on inputs 

carrPerSymb         = fc/fSymb; 

samplesPerSymb      = fs/fSymb; 

SymbIntDEG          = DphiDeg/(M-1); 

Nc                  = fc/fSymb; 

  

  

%Windowing definition 

%% Window can use last 1 carrier in 1 symbol 

smplHC          = floor(samplesPerSymb/carrPerSymb/2); 

windowHC        = [zeros(1,samplesPerSymb-smplHC),2*carrPerSymb*ones(1,smplHC)];%for symbol grid 

alignment 

smpl1C          = floor(samplesPerSymb/carrPerSymb); 

window1C        = [zeros(1,samplesPerSymb-smpl1C),carrPerSymb*ones(1,smpl1C)];  %Default for 

Demodulation 

  

fprintf('\n Analyzing input...\n'); 

  

%% ##################### 

%% (1) Demodulate signal 

%% ##################### 

[DFTsymbs, nSymbDFT, IQ_seg_meas_rad, optGridPos] = demodulateCarrierDFT(Input_fs, NN, 

samplesPerSymb, windowHC, window1C, carrPerSymb); 

  

  

%% ##################### 

%% (2) Get Reference signal 

%% ##################### 

    Symbols_FRM_RX = extractOneFrame(DFTsymbs,nSymbDFT,Symbols_TX_REF, nTX); 

 

  

%% ##################### 

%% (3) Estimate params 

%% ##################### 

Ntaps = 4; 

[hVec, RMSerr]= LLS_Cplx_Channel_Fit_NTaps([1,1,1,1,Symbols_TX_REF],[1,1,1,1,Symbols_FRM_RX], Ntaps); 

h0 = hVec(1); h1=hVec(2);  

  

%% ############################################################################## 

  

%% Estimate main ISI parameters 

ISIratio               = abs(h1)./abs(h0); %ISIangle=asin(L/R), where L=distance 2 outer pts in cloud 

%L/2=r*sin(Dphi/2) from the ISI cloud triangle -> L/R = r/R * 2*sin(Dphi/2) 

ISIangle               = asin(2*ISIratio*sin(DphiDeg/2/180*pi)); %size of ISI cloud in Degrees 

ISIangleDEG            = ISIangle*rad2deg; 

ISIm_SI                = ISIangleDEG/SymbIntDEG; 

detuningAngleDEG       = (angle(h1)-angle(h0))*rad2deg; 

DTF = detuningAngleDEG/(360*Nc);  

  

fprintf('------------\n'); 

fprintf('ISI Measures\n'); 

fprintf('------------\n'); 

fprintf('IQ segment (measured)  = %2.2f DEG \n',IQ_seg_meas_rad*rad2deg); 

fprintf('Symbol Interval        = %2.2f DEG \n',SymbIntDEG); 

fprintf('ISI magnitude          = %05.2f [DEG]  = %2.2f [Symb.Int]\n',ISIangleDEG,ISIm_SI); 



ISO/IEC 10373-6:2011/PDAM 5 

6 © ISO/IEC 2011 – All rights reserved 
 

fprintf('ISI rotation           = %05.2f [DEG]\n',detuningAngleDEG); 

  

%% Estimate phase noise 

%reconstruct linear noiseless signal @ Channel output 

trailSilence = 10; 

Symbols_Chout_k_REF = filter(hVec,1,[ones(1,trailSilence),Symbols_TX_REF]); 

Symbols_Chout_k_REF = Symbols_Chout_k_REF(1+trailSilence:end); 

  

  

  

%Measure phase noise based on this REF 

phaseNoise         = angle(Symbols_FRM_RX)-angle(Symbols_Chout_k_REF); 

%Condition Phase noise (differential) 

phaseNoise         = diff(phaseNoise); %removes Low Freq PN and any residual DC 

dphaseNoiseP2P     = max(phaseNoise)-min(phaseNoise); 

dphaseNoiseP2PDEG  = dphaseNoiseP2P*rad2deg; 

dphaseNoiseP2P_SI  = dphaseNoiseP2PDEG/SymbIntDEG; 

dphaseNoiseRMS_DEG = sqrt(mean(phaseNoise.^2))*rad2deg; 

dphaseNoiseRMS_SI  = dphaseNoiseRMS_DEG/SymbIntDEG; 

%Any non linearity and wrong constellation point definition fall into this measure 

fprintf('--------------\n'); 

fprintf('Noise Measures\n'); 

fprintf('--------------\n'); 

fprintf('D-Phase noise RMS      = %05.2f [DEG]  = %2.3f 

[Symb.Int]\n',dphaseNoiseRMS_DEG,dphaseNoiseRMS_SI); 

fprintf('D-Phase noise P2P      = %05.2f [DEG]  = %2.3f 

[Symb.Int]\n',dphaseNoiseP2PDEG,dphaseNoiseP2P_SI); 

  

%% Test Result 

%% ########### 

if (abs(detuningAngleDEG) < ISId_DEG_MAX) 

    passISI = (ISIm_SI < ISIm_SI_Max1); 

else 

    passISI = (ISIm_SI < ISIm_SI_Max2);     

end 

passNoise = dphaseNoiseRMS_SI < PN_MAX_RMS_SI; 

  

if(~passNoise) 

    fprintf('\n Test failed, due to too large noise \n'); 

end 

if(~passISI) 

    fprintf('\n Test failed, due to too large Interference \n');     

end 

if(passNoise & passISI) 

    fprintf('\n Test Passed \n');         

end        

 

    

 

% Input_fs,NN      =   scope data resampled at fs 

% windowAlign      =   narrow window used for symbol grid alignment (e.g. boxcar 1/2 carrier long) 

% windowDemod      =   window used for symbol demodulation (e.g. boxcar 2 carriers long) 

% 

%OUTPUTS: 

% IQ_seg_meas_rad  =   measured IQ segment (always slightly smaller than actual one due to ISI). 

% optGridPos       =   sample offset denoting where a symbol starts 

  

function  [DFTsymbs, nSymbDFT, IQ_seg_meas_rad, optGridPos] = ... 

          demodulateCarrierDFT(Input_fs, NN, samplesPerSymb, windowAlign, windowDemod, carrPerSymb) 

  

NumSymbs            = floor(NN/samplesPerSymb); 

  

fprintf('Searching Symbol Grid...\n'); 

%% ##################### 

%% (1) Find Symbol Grid 

%% ##################### 

%1a- First Demodulation, with random phase, Find Begin of preamble, where to start symbol grid search 

gridPos = 0; 

nSymbDFT     = NumSymbs-1;        %skip last symbol 

DFTsymbs     = zeros(1,nSymbDFT); %allocate DFT output 

for iSymbol = 0:nSymbDFT-1 

    symbolStart           = gridPos + iSymbol*samplesPerSymb; 

    DFTsymbs(iSymbol+1)   = windowed_DFT_1val(Input_fs, NN, ... 

                                            symbolStart, samplesPerSymb, windowAlign, carrPerSymb);  

end 

noSilenceSymbIdx = find(180/pi*diff(angle(DFTsymbs)) > 1); 



ISO/IEC 10373-6:2011/PDAM 5 

© ISO/IEC 2011 – All rights reserved 7 
 

symbolBegin   = noSilenceSymbIdx(1); 

  

%1b- Now search symbol grid on the beginning of preamble 

nSymbDFTShort = 64; 

DFTsymbs     = zeros(1,nSymbDFT); %allocate DFT output 

varphiMax    = -1; 

for gridPos=0:samplesPerSymb-1 

    for iSymbol = symbolBegin:symbolBegin+nSymbDFTShort 

        symbolStart           = gridPos + iSymbol*samplesPerSymb; 

        DFTsymbs(iSymbol+1)   = windowed_DFT_1val(Input_fs, NN, ... 

                                       symbolStart, samplesPerSymb, windowAlign, carrPerSymb);  

    end 

    varDFT                    = 

complexVariance(DFTsymbs(symbolBegin:symbolBegin+nSymbDFTShort),nSymbDFTShort+1); 

    if (varDFT > varphiMax) % new maximum found 

        varphiMax = varDFT; optGridPos = gridPos; 

    end 

end 

optGridPos = max(optGridPos-1,0); %safer 1 sample earlier than later 

  

  

fprintf('Operating Windowed DFT Demodulation...\n'); 

%% ########################### 

%% (2) Calc DFT of each symbol (demodulate to cplx baseband) 

%% ########################### 

for iSymbol = 0:nSymbDFT-1 

    symbolStart         = optGridPos + iSymbol*samplesPerSymb; 

    DFTsymbs(iSymbol+1) = windowed_DFT_1val(Input_fs, NN, ... 

                                            symbolStart, samplesPerSymb, windowDemod, carrPerSymb); 

end 

DFTsymbs        = ReAlignSilencePhase(DFTsymbs, nSymbDFT, 0); 

IQ_seg_meas_rad = max(angle(DFTsymbs))-min(angle(DFTsymbs)); %Measure IQ segment (approx) 

 

function Symbols_FRM_RX = extractOneFrame(DFTsymbs,nSymbDFT,Symbols_TX_REF, nTX) 

%correlation based symbol alignment 

phasesDemod       = angle(DFTsymbs); 

preambleSYF_phase = angle(Symbols_TX_REF);       %tx phasesDemod 

  

autoCorrVal         = sum(preambleSYF_phase.^2); 

minCrossCorr        = autoCorrVal/2; 

maxCorr             = -1; 

idxStart            = -1; 

  

for iSymbol = 0:nSymbDFT-1-nTX  %loop over rx symbols (longer than SYF) 

    corrOut = 0; 

    for idxSYF = 0:nTX-1        %loop over preamble phasesDemod 

        corrOut = corrOut + preambleSYF_phase(1+idxSYF)*phasesDemod(1+iSymbol+idxSYF); 

    end 

    if corrOut > maxCorr 

        maxCorr = corrOut; 

        idxStart= iSymbol; 

    end  

end 

if (maxCorr < minCrossCorr) 

    fprintf('\n Symbol Alignment Failed, wrong inputs ?'); 

end 

Symbols_FRM_RX = DFTsymbs(1+idxStart:1+idxStart+nTX-1); 

 

function symbolDecisions = sliceSymbols2PSK(Symbols_RX) 

  

minAngle = min(angle(Symbols_RX));  %level 0 

maxAngle = max(angle(Symbols_RX));  %level 1 

ThrAngle = (minAngle+maxAngle)/2; 

  

N1 = length(Symbols_RX); 

symbolDecisions = zeros(1,N1); 

for jj=1:N1 

    if angle(Symbols_RX(jj))>ThrAngle 

        symbolDecisions(jj) = exp(i*maxAngle); 

    else 

        symbolDecisions(jj) = exp(i*minAngle);         

    end 

end 

 

%inputVec, vecSize   : The measurement data 

%startPos, Nsmpls    : Defines the portion of data for current DFT 



ISO/IEC 10373-6:2011/PDAM 5 

8 © ISO/IEC 2011 – All rights reserved 
 

%window              : Weights the selected portion of data 

%freqIdx             : 0..Nsmpls-1;    freqIdx = freq/fs*Nsmpls, is a normalized frequency 

%                    : At the carrier: freqIdx = fc/fs*fs/fSymb = fc/fSymb = carriers/symbol 

function  DFTval = windowed_DFT_1val(inputVec, vecSize, ... 

                                     startPos, Nsmpls, window, ... 

                                     freqIdx) 

if (startPos+Nsmpls > vecSize) 

    fprintf('\n DFTval Error! Out of boundary! \n'); 

    DFTval = []; 

    return; 

end 

  

accVal = 0; 

for jj=startPos:startPos+Nsmpls-1 

    iSmpl  = jj-startPos; 

    accVal = accVal + inputVec(1+jj)*window(1+iSmpl)*exp(-i*2*pi*freqIdx*iSmpl/Nsmpls); 

end 

  

DFTval = 2*accVal/Nsmpls; 

 

 

%var(X) = E{(X-mu)Conjugate(X-mu)} 

function var = complexVariance(cplxVecIn, vecLen) 

  

vecLen = length(cplxVecIn); %Remove in C 

  

if (vecLen ==1) 

    var = 0; 

else 

    mu  = sum(cplxVecIn)/vecLen; 

    var = sum((cplxVecIn-mu).*conj(cplxVecIn-mu))/(vecLen-1); 

end 

 

function cplxVecOut = ReAlignSilencePhase(cplxVecIn, vecLen, silencePhaseRef) 

  

phaseInDeg =180/pi*atan2(imag(cplxVecIn),real(cplxVecIn)); 

  

%find begin of silence 

phaseDegNoSilence = 10; 

phaseDiffDegAbs   = phaseDegNoSilence; 

idxBegin = 1; 

while (phaseDiffDegAbs>=phaseDegNoSilence && idxBegin < vecLen) 

    phaseDiffDegAbs = abs(phaseInDeg(1+idxBegin)-phaseInDeg(1+idxBegin-1)); 

    idxBegin = idxBegin+1; 

end 

  

%find end of silence and avg phase of unmod carrier 

phaseDiffDegAbs = 0; 

idxEnd = idxBegin; 

avgUnModPhase = 0; 

count    = 0; 

while (phaseDiffDegAbs<phaseDegNoSilence && idxEnd < vecLen) 

    phaseDiffDegAbs = abs(phaseInDeg(1+idxEnd)-phaseInDeg(1+idxEnd-1)); 

    avgUnModPhase = avgUnModPhase + phaseInDeg(1+idxEnd-1); 

    count    = count+1; 

    idxEnd   = idxEnd+1;     

end 

avgUnModPhase = avgUnModPhase/count/180*pi; 

  

%rotate to Reference phase of silence 

cplxVecOut  = cplxVecIn.*exp(-i*(avgUnModPhase-silencePhaseRef)); 

 

 

function [hVec, RMSerr] = LLS_Cplx_Channel_Fit_NTaps(Symbols_TX, Symbols_RX, Ntaps)     

%    [ x(k)   x(k-1) ...  x(k-Ntaps+1)        ]  [h0          ]          [y0] 

%    [ x(k-1) x(k-2) ...                      ]  [h1          ]          [  ] 

%    [ .      .                               ]  [..          ]     ~=   [  ] 

%    [ .      .                               ]  [..          ]          [  ] 

%    [ x(k-L) x(..)  ...  x(k-Ntaps+1-L)      ]  [h(Ntaps-1)  ]          [yL] 

  

%x = input, a-priori, noiseless      TX 

%y = output, observation, noisy     RX 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %% Estimate channel in the form [h0,h1,h(Ntap-1)] using LLS 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



ISO/IEC 10373-6:2011/PDAM 5 

© ISO/IEC 2011 – All rights reserved 9 
 

  

    if(Ntaps>length(Symbols_TX)) 

        error('Nr taps larger than input size'); 

    end 

    if(length(Symbols_TX)~=length(Symbols_RX)) 

        error('Input sizes don''t match'); 

    end 

     

    %prepare data 

    m       = length(Symbols_TX)-Ntaps+1;  %Column size ~ observation Length 

    X       = zeros(m,Ntaps); 

    for iCol = 0:Ntaps-1 

        X(:,iCol+1) = Symbols_TX(end-iCol  : -1 : Ntaps-iCol)'; %(m x Ntaps)  (a-priori, noiseless) 

    end 

    y       = Symbols_RX(end:-1:Ntaps)';                        %(m x 1)      (observations, noisy) 

  

    %Normal Equation : X^T.X.h - X^T.y = 0 <=> h = MinArg(|X.h-y|^2, for all h) 

    XT      = X'; 

    XTX     = XT*X;         % Symmetric and positive definite, noiseless 

    XTy     = XT*y; 

     

    if(cond(XTX)>1.2e8) 

        fprintf('\n WARNING : Ill conditioned fitting may result ## !!\n'); 

    end 

  

    %Solve linear system XTX*h = XTy  

    hVec = linsolve(XTX,XTy); 

     

    hVec = hVec'; 

     

    RMSerr = sqrt(mean((abs(X*hVec'-y)).^2)); 



ISO/IEC 10373-6:2011/PDAM 5 

10 © ISO/IEC 2011 – All rights reserved 
 

Annex Amd.5 B 
(informative) 

 
Example Test report 

This annex shows example test reports as could be produced by the IQ segment, noise and ISI analysis 
tool for the data rate 3fc/4. 

 
 
 
Example1: Pass 

------------ 

ISI Measures 

------------ 

IQ segment (measured)  = 55.26 DEG  

Symbol Interval        = 8.00 DEG  

ISI magnitude          = 11.68 [DEG]  = 1.46 [Symb.Int] 

ISI rotation           = 02.40 [DEG] 

-------------- 

Noise Measures 

-------------- 

D-Phase noise RMS      = 00.14 [DEG]  = 0.017 [Symb.Int] 

D-Phase noise P2P      = 00.75 [DEG]  = 0.094 [Symb.Int] 

 

 Test Passed 

 

Example2: Fail due to noise 

------------ 

ISI Measures 

------------ 

IQ segment (measured)  = 61.73 DEG  

Symbol Interval        = 8.00 DEG  

ISI magnitude          = 11.79 [DEG]  = 1.47 [Symb.Int] 

ISI rotation           = 00.97 [DEG] 

-------------- 

Noise Measures 

-------------- 

D-Phase noise RMS      = 00.48 [DEG]  = 0.060 [Symb.Int] 

D-Phase noise P2P      = 02.32 [DEG]  = 0.290 [Symb.Int] 

 

 Test failed, due to too large noise 

 

Example3: Fail due to ISI 

------------ 

ISI Measures 

------------ 

IQ segment (measured)  = 52.54 DEG  

Symbol Interval        = 8.00 DEG  

ISI magnitude          = 19.07 [DEG]  = 2.38 [Symb.Int] 

ISI rotation           = 16.70 [DEG] 

-------------- 

Noise Measures 

-------------- 

D-Phase noise RMS      = 00.12 [DEG]  = 0.015 [Symb.Int] 

D-Phase noise P2P      = 00.72 [DEG]  = 0.090 [Symb.Int] 

 

 Test failed, due to too large Interference  
 



ISO/IEC 10373-6:2011/PDAM 5 

© ISO/IEC 2011 – All rights reserved 11 
 

Annex Amd.5 C 
(informative) 

 
PCD ISI conditioning for PICC reception test 

To test PICC reception under worst ISI conditions (conditions 2 through 5 of section 7.2.7.2), we are 
interested in creating test signals with worst case inter-symbol interference. Rather than using a physical 
worst-case antenna resonator (requiring a dedicated matching network for each amount of inter-symbol 
interference that is to be generated), the inter-symbol interference is created digitally before entering the PCD 
antenna. The PCD antenna will introduce little extra inter-symbol interference itself by using the wide-band 
ISO matching network as described in A.2.2 of the ISO 10373-6 document. The digital inter-symbol 
interference creation allows flexible test signal conditioning. 
 
The digital pre-processing of the symbols that are to be transmitted in the test signal is a baseband 
representation of a PCD antenna resonator that would give rise to the desired level of inter-symbol 
interference, including rotation of the clouds. This is illustrated in Figure Amd5 C.1 —, where the transfer 
function HRF describes the physical antenna resonator (having two complex conjugated poles at a frequency 
close to 13.56MHz). The effect of this resonator can be mimicked by a filter with transfer function Hbb in front of 
the upconversion mixer. The transfer function H’RF represents a wide-band antenna plus matching network, 
such as described in A.2.2 of ISO10373-6, minimally effecting inter-symbol interference. 
 

 
(a)   

 

 
(b)   

Figure Amd5 C.1 — Antenna resonator modeling using baseband complex filter. (a) Real PCD block 
schematic; (b) emulating HRF  using a complex filter Hbb. 

 
A time-discrete baseband filter that creates the desired amount of ISI, including rotation, is described in the z-
domain by: 
 

Hbb(z) = (1 - p) / (1 - p z
-1) 

 



ISO/IEC 10373-6:2011/PDAM 5 

12 © ISO/IEC 2011 – All rights reserved 
 

with p the complex pole causing the ISI. If the sample rate fsr of this filter is a multiple to the symbol rate fsymb, 
the pole location that yields the desired ISIm and ISId (magnitude and rotation) can be shown to be at: 
 

p = (1⁄2·sin(ISIm·SI)·exp(j ISId) / sin(1⁄2 seg))^(fsymb/fsr) 
 

with j the imaginary unit and seg the IQ segment used for PSK modulation. 



ISO/IEC 10373-6:2011/PDAM 5 

© ISO/IEC 2011 – All rights reserved 13 
 

Annex Amd.5 D 
(informative) 

 
PCD signal conditioning tool 

This annex contains informative pseudo-code, describing how the five test conditions in the digital base-band 
domain could be created digitally. 
The functions Condition1() through Condition5() assume an input array Sin of symbols that are already 
mapped to their PSK constellation points. This array therefore consists of complex numbers. For example, the 
rate 3fc/4 constellation point at +32 degrees is described by a complex number S, such that: 
 

atan2(imag(S)/real(S)) == 32·/180 rad. 
 

The amplitude R of the constellation points, given by: 
 

sqrt(imag(S)·imag(S) + real(S)·real(S)) == R 
 

should be equal for all elements of Sin, such that all constellation points are located on a circle with radius R. 
 

1. #include <complex>  // Standard Template Lib 

2.  

3. // max phase noise: 

4. #define PNRMSMAX    0.032 /* TBD */ 

5.  

6. // max ISI conditions 2 and 3 

7. #define ISImmax1    1.5   /* TBD */ 

8. #define ISIdmax1    21.0  /* TBD */ 

9.  

10. // max ISI conditions 4 and 5 
11. #define ISImmax2    0.52  /* TBD */ 

12. #define ISId2        60.0  /* TBD */ 

13.  
14. using namespace std; 
15.  
16. // Definition of type cmplx: 
17. typedef complex<double> cmplx; 
18.  
19. ////////////////////////////////// 
20. // Some helper functions: //////// 
21. ////////////////////////////////// 
22.  
23. double randn(void) 
24. { /* returns random number with normal distribution 
25.      mean = 0; sigma = 1.0 */ 
26.   int i; 
27.   double res = 0; 
28.   for (i=0;i<4*12;++i) 
29.     res += rand(); 
30.   return res/RAND_MAX/2.0 - 12.0; 
31. } 
32.  
33. cmplx ISIpole(double ISIm, double ISId, double IQseg, double M) 
34. { /* Calculates position of filter pole 
35.      --- in --- 
36.      ISIm:   ISI magnitude in units of symbol interval 
37.      ISId:   ISI rotation in degrees 
38.      IQseg:  IQ segment in degrees 
39.      M:      PSK order 
40.      --- out --- 
41.      returns complex number representing position of pole */ 
42.   double  preal, pimag; 
43.   double  deg2rad = atan(1)/45;  // conversion factor 
44.   double  symint  = IQseg*deg2rad/(M-1); 
45.  
46.   preal = sin(ISIm*symint)/sin(IQseg*deg2rad/2) * 
47.           cos(ISId*deg2rad)/2.0; 



ISO/IEC 10373-6:2011/PDAM 5 

14 © ISO/IEC 2011 – All rights reserved 
 

48.   pimag = sin(ISIm*symint)/sin(IQseg*deg2rad/2) * 
49.           sin(ISId*deg2rad)/2.0; 
50.   return cmplx(preal,pimag); 
51. } 
52.  
53. void ISIfilter(cmplx* Sin, int len, cmplx p, cmplx* Sout) 
54. { /* Applies ISI based on complex pole 
55.      --- in --- 
56.      Sin:    clean input symbols 
57.      len:    length of input symbol array 
58.      p:      complex filter pole 
59.      --- out --- 
60.      Sout:   output symbols of function */ 
61.   int     i; 
62.   double  amp; 
63.  
64.   amp = abs(Sin[0]); // amplitude R 
65.   Sout[0] = p*amp + (1.0-p)*Sin[0]; // initial condition from silence 
66.   for (i=1; i<len; i++) 
67.     Sout[i] = p*Sout[i-1] + (1.0-p)*Sin[i]; 
68. } 
69.  
70. ////////////////////////////////// 
71. // The ConditionX functions: ///// 
72. ////////////////////////////////// 
73.  
74. void Condition1(cmplx* Sin, int len, double IQseg, int M, cmplx* Sout) 
75. { /* Applies condition 1 to Sin 
76.      --- in --- 
77.      Sin:    clean input symbols 
78.      len:    length of input symbol array 
79.      IQseg:  IQ segment in degrees 
80.      M:      PSK order 
81.      --- out --- 
82.      Sout:   output symbols of function */ 
83.   int i; 
84.   double symint, noiseang; 
85.   cmplx noise; 
86.  
87.   symint = IQseg*atan(1)/45/(M-1);  // symbol interval 
88.  
89.   for (i=0; i<len; ++i) { 
90.     noiseang = randn() * PNRMSMAX * symint; 
91.       // randn(): gaussian noise 
92.     noise    = polar(1.0, noiseang);  // exp(j*noiseang) 
93.     /* noise contains complex noise product */ 
94.  
95.     Sout[i] = Sin[i]*noise;  /* complex multiplication */ 
96.   } 
97. } 
98.  
99. void Condition2(cmplx* Sin, int len, double IQseg, int M, cmplx* Sout) 
100. { /* Applies condition 2 to Sin 
101.      --- in --- 
102.      Sin:     clean input symbols 
103.      len:     length of input symbol array 
104.      M:       number of PSK constellation points 
105.      IQseg:   IQ segment in radians 
106.      --- out --- 
107.      Sout:    output symbols of function */ 
108.   cmplx   p;   // baseband time-discrete pole causing required ISI 
109.  
110.   p = ISIpole(ISImmax1, ISIdmax1, IQseg, M); 
111.   ISIfilter(Sin,len, p, Sout); 
112. } 
113.  
114. void Condition3(cmplx* Sin, int len, double IQseg, int M, cmplx* Sout) 
115. { /* Applies condition 3 to Sin 
116.      --- in --- 
117.      Sin:     clean input symbols 
118.      len:     length of input symbol array 
119.      M:       number of PSK constellation points 
120.      IQseg:   IQ segment in radians 
121.      --- out --- 
122.      Sout:    output symbols of function */ 
123.   cmplx   p;   // baseband time-discrete pole causing required ISI 



ISO/IEC 10373-6:2011/PDAM 5 

© ISO/IEC 2011 – All rights reserved 15 
 

124.  
125.   p = ISIpole(ISImmax1, -ISIdmax1, IQseg, M); 
126.   ISIfilter(Sin,len, p, Sout); 
127. } 
128.  
129. void Condition4(cmplx* Sin, int len, double IQseg, int M, cmplx* Sout) 
130. { /* Applies condition 4 to Sin 
131.      --- in --- 
132.      Sin:     clean input symbols 
133.      len:     length of input symbol array 
134.      M:       number of PSK constellation points 
135.      IQseg:   IQ segment in radians 
136.      --- out --- 
137.      Sout:    output symbols of function */ 
138.   cmplx   p;   // baseband time-discrete pole causing required ISI 
139.  
140.   p = ISIpole(ISImmax2, ISId2, IQseg, M); 
141.   ISIfilter(Sin,len, p, Sout); 
142. } 
143.  
144. void Condition5(cmplx* Sin, int len, double IQseg, int M, cmplx* Sout) 
145. { /* Applies condition 5 to Sin 
146.      --- in --- 
147.      Sin:     clean input symbols 
148.      len:     length of input symbol array 
149.      M:       number of PSK constellation points 
150.      IQseg:   IQ segment in radians 
151.      --- out --- 
152.      Sout:    output symbols of function */ 
153.   cmplx   p;   // baseband time-discrete pole causing required ISI 
154.  
155.   p = ISIpole(ISImmax2, -ISId2, IQseg, M); 
156.   ISIfilter(Sin,len, p, Sout); 
157. } 

 

" 

 

 


